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ABSTRACT

Using a predetermined statistical scheme, forecasts are made of the daily air temperature (47 at San
Diego, starting from local antecedent information concerning AT and sea surface temperature (ST) only.
These forecasts are verified by calculating skill scores () over 1948-79. In this maritime area such simple
schemes turn out to have high S for lead times up to a month and small but positive § out t0 a year.
Differences in S of the various one predictor schemes (ST — AT, ST — ST, AT — AT, AT — ST) are
discussed; ST — ST is far superior to any of the other three. For most schemes S is low in late summer; this
is attributed to the shatlowness of the ocean’s mixed layer in that season. The effects of time averaging the
predictor and/or predictand are discussed for the ST — AT scheme. For long enough lead times averaging
appears to improve forecast skill. The localness of the prognostic information carried by ST is investigated
by comparing § for San Diego and an inland station (Escondido). At a forecast lead time of three days S
decreases by 50% over a distance of 25 km. Further analysis shows that this decay is primarily caused by a
decrease in skill of daily maximum temperature forecasts.

In view of the similarity of the present results to those obtained at the Dutch coast, we conclude that local
information about the state of the surface has probably enough prognostic potential to be incorporated in
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existing operational schemes of short and long range air temperature forecasts near oceans and lakes.

1. Introduction

Suppose we want to make a weather forecast for a
given location A. What data to describe the present
do we need in order to make such a forecast? It is
almost imperative to refer to Fig. 18.9 in Smagorinsky
(1974) in this context. The message of that figure is
that for short-range prediction one needs data for a
small area (of which A is roughly in the center) and
that with increasing lead time data for larger and
larger areas are required. Ultimately for long enough
lead times one needs to specify initial data over the
whole globe including the upper oceans and the
earth’s surface.

In view of this, the present paper is unusual. We
will try to make forecasts of the air temperature for
lead times ranging from one day to one year starting
Jrom antecedent local information only. This will be
done for two sites at the West coast of a continent,
namely San Diego (California) and Den Helder (The
Netherlands). These sites are chosen because the
nearby ocean is thought to provide the slowly changing
lower boundary conditions needed to make a skillful
forecast of subsequent air temperatures. One may
describe our attempts as single station forecasting
although (in contrast to the habits in this old profes-
sion) we will use surface observations only.
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The basic experiment will be to predict daily mean
air temperatures (47 from antecedent instantaneous
sea surface temperature (ST), notation ST — AT.
This is done by using an a priori defined statistical
forecast method which is outlined in Section 2. Most
of the results discussed here are for San Diego’s AT
starting from ST at the nearby Scripps Pier in La
Jolla. It has been-known for a long time (Hubbs,
1948; Roden, 1960) that ST and AT are related in
this area. Hubbs noted that sea temperature at La
Jolla corresponded closely to air temperature records
for San Diego; his evidence was based on monthly
mean data for 1915-48. Roden (1960) using updated
datasets showed that anomalies in monthly mean AT
and ST were correlated, the coherence increasing
from 0.2 at 1 cycle per 2 months to 0.8 at the multi-
year time-scales. At none of these time-scales did the
ocean appear to lead the atmosphere or reverse; the
two media were roughly in phase.

Restricting ourselves to using just local initial data
means that the results of this study may not be
directly applicable in practice where one would like
to use a Numerical Weather Prediction (NWP) model
as a primary forecasting tool, at least for the short-
range prediction. However, we will encounter here
an example of amazingly high skill for both short
and long lead times using simple information and
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simple methods only. This naturally leads to the
question whether a combination of NWP and local
information (incorporated via Model Output Statistics
say) would lead to better forecasts.

The simplicity of our approach allows us to address
several interesting questions.

1) What is the skill of air temperature forecasts
made by local methods at places where external
memory (the ocean) is so close? We will investigate
lead times of up to a year.

2) How do the following schemes compare? ST —
AT (basic one), AT — ST, ST — ST and AT — AT.

3) Is there seasonality in the skill?

4) Does it help to use two predictors, say (47,
ST) — AT rather than ST or AT alone?

5) Does averaging (in time) of predictor and/or
predictand improve the skill of forecasting 47?7

6) What is the difference in skill in forecasting
maximum and minimum temperature from anteced-
ent ST?

7) How does the skill of the ST — AT scheme
decay away from the area where ST is measured.

2. Data, forecast method and verification

In this study we use pairs of datasets. One such
pair consists of 1) daily mean (= average max/min)
air temperature (A7) at San Diego’s airport (Lindbergh
Field) and ii) daily sea surface temperature (S7') at
the Scripps Pier in La Jolla (one observation, in the
morning). These two sites are about 20 km apart
which is close enough to call the procedure to be
discussed local forecasting. We will use data over
1948-79. The second pair consists of daily mean
(= average over 6 or 8 observations) S7 at light-
vessel Texel (North Sea) and daily mean (based on
24 hourly observations) A7 in Den Helder (at the
Dutch coast) for the period 1890-1977. These two
sites are 25 km apart. The latter pair of datasets has
been discussed earlier in Van den Dool and Nap
(1981), and will be used here only occasionally for a
comparison with the results of San Diego. In Section
3g, we will use AT at Escondido, which is 25 km
inland rather than right at the edge of the ocean.
Finally in Sections 3f and 3g daily maximum and
minimum temperatures at San Diego and Escondido
are used.

As a first step the data for San Diego, Escondido
and Scripps Pier were converted from °F (whole
degrees) to °C (tenths of a degree). We then detrended
the AT and ST series by subtracting a 10 day/10 year
running mean from each of the daily values, i.e.,

J+5 k+5

Tk, j) = T*(k, j) — 2 2 T*(k, j)/100

J—4 k-4

where T* refers to raw data, k is the day (k = 1, 365;
366 is the same as 1 etc.) and j is the year (j = 1,

(1
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32). For j < 5 or j > 28 the average was taken over
the first and last ten years respectively. The aim of
applying (1) is to take out the annual cycle and multi-
year trends in a smooth way. The resulting anomaly
series is used throughout the remainder of this paper
and referred to as AT and ST.

No attempts were made to explicitly correct the
data for known changes in observational site, instru-
ments and changes in exposure. Such changes may
have introduced some spurious low-frequency vari-
ability in the time series. One of the objectives of
taking out a ten-year running mean (rather than a
grand mean) is to exclude such artificial low-frequency
variability. However, it is realized that taking out
trends (whichever way it is done) is always arbitrary.
Another check on the influence of data problems is
provided below by considering the results for the first
and second half of the record separately.

Both for background information and later refer-
ence, Fig. 1 shows the frequency distribution of
(detrended) ST and AT in the month of October.
The climatological mean temperatures (over 32 years)
for October (vertical arrows) have been added to ST
and AT in plotting this histogram. As can be seen in
Fig. 1, AT tends to be both higher and more variable
than S7. With the exception of one or two winter
months ST tends to be lower than AT (Tont, 1981),
thereby contributing to the static stability of the lower
atmosphere. Except for the summer months AT has
a much larger variance than ST.

Frequency distributions such as the one shown in
Fig. 1 have been made for each calendar day both
for ST and AT. Given the distribution, each day
during 1948-79 has been categorized in terciles (pre-
dictand) and quintiles (predictor), that is (1) B(elow),
N(ear normal) and A(bove), the chances being as
close as possible to 3 and (2) M(uch) B(elow),
N(ormal) and M{(uch) A(bove) the chances being as
close as possible to 20, 60 and 20%. Our forecasting
scheme then reads (for the basic experiment)

STO0) e (%/;) — AT(r) € (Z)

where 7 = 0. In words: if ST at day O falls in the
class MA(MB) then we forecast that A7, at all lead
times 7, will be in A(B). There is no forecast if S7T(0)
€ N (we will briefly discuss the effect of this in
Section 3), i.e. there is a forecast during 40% of the
time. Expression (2) is a predetermined form of
damped cross-persistence. This is likely to give some
results for San Diego since persistence at long time
scales in this area is higher than anywhere else in the
United States (van den Dool, 1984). Expression (2)
is for the ST — AT scheme but it is straightforward
to make the ST — ST, AT — AT and AT — ST
schemes in a similar fashion. In all of these cases
quintiles apply to the predictor and terciles to the
predictand.

2
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FiG. 1. Frequency distribution of daily values of anomalies in air temperature at
Lindbergh Field (San Diego) and anomalies in sea surface temperature at the Scripps
Pier at La Jolla in the month of October. The period is 1948-79. The 32-year mean
October temperature has been added as a reference (the vertical arrows). The anomalies,
however, are relative to a mean, defined by Eq. (1), that changes smoothly with calendar
date and- year. Total cases: 992. The number of occurrence is given for 1°C intervals,
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i.e., 12.0 < AT < 12.9°C etc.

The forecasts are verified in the following way. A
forecast is a hit if the class is predicted correctly;
there are no partial hits. From a large number (M)
of forecasts the skill score (S) can be calculated by

H-C

S Y—C 3)
where H is the number of hits and C is the number
of hits expected by chance which in our case is close
to M/3.! So S is 1 for perfect forecasts and 0 for
forecasts made without (detectable) insight in the
problem. We will study S for lead times 7 ranging
from O (specification rather) to a yéar, as a function
of season, for daily values, for maximum and mini-
mum temperature separately, for time averaged tem-
peratures (both predictor and predictand) and for the
two geographical locations.

3. Results
a. Year-round results

In Fig. 2 some year-round results of the ST — AT
scheme are shown for lead times up to two months.
The number of forecasts that went into the skill score
calculation (for one 7) is roughly 40% of 365 X 32,
The curve based on detrended data (lower part of
Fig. 2) is the basic experiment. As can be seen ST
specifies AT with a skill score of 38%. With increasing
lead time S drops below 20% at 6 days but remains
10% or more up to 60 days. This is truly unusual
because it means that in San Diego there is skill in

'It is not always possible to distribute 32 temperature values
over 3 (5 or any) equally probable classes. Therefore we kept track
of the exact distributions over 1948-79 and used the occurrences
in each class during 1948-79 in the calculation of C. This rules
out artificial skill.

daily air temperature forecast beyond the range of
what is usually called deterministic predictability (2-
3 weeks), skill that can be effectuated with extremely
simple means. The fact that the skill levels off at 10-
15% (rather than zero) indicates that there is coherent
low-frequency variability in the AT and ST series.
This also means that we are dealing here with a two
time-scale problem, which is to be expected for air—
sea interaction.
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FIG. 2. Year-round skill score (%) of forecasts of the air temper-
ature in San Diego from antecedent sea surface temperature in La
Jolla (ST — AT), for lead times from O to 60 days. Forecast
scheme for the raw data as well as the detrended data is based on
Exp. (2). The upper part of the figure shows verification for 1948-
63 and 1964-79 separately, the lower part is based on all data. For
convenience the symbols are plotted every three days.
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The effect of taking out the trend is shown in Fig.
2 by comparing the raw and detrended curves. De-
trending takes away some of the skill that, most
likely, has to be appreciated as artificial. Our way (or
any) of detrending [Eq. (1)] is arbitrary of course. We
rerun the skill score calculation with 1 day/10 year
and 30 day/10 year climatologies and found essentially
the same results. The curve labelled “all cases,” refers
to an experiment where both ST and AT were
categorized in a two-class system, above and below
median. The forecast then reads [in the spirit of (2)]

Above Median
ST(0 —
0y (Below Median)

Above Median
AT(r) & (Below Median)

With this procedure a forecast can be made in all
cases, rather than 40% of the time [with (2)]. Including
near-normal predictors lowers the skill somewhat but
the difference is not dramatic. In the upper part of
Fig. 2 the forecasts of the basic experiment [detrended,
Exp. (2)] are verified separately for 1948-63 and
1964-79. This gives some indication of the sampling
error in the year-round skill score. The rms difference
between the two sets of 16 years is 3.1% which can
be interpreted as o,sv2 where o, is the sampling
error in 16 year mean skill. So ¢3; should be
about 1.6%. ;

In Fig. 3 a comparison is made between the ST —
AT, ST — ST, AT — AT and AT — ST schemes,
out to a lead time of 60 days. In general the ST
predicting itself is far superior to any of the other
three combinations. If one’s target is to predict the
air temperature it does not seem to make very much
difference whether one starts from antecedent ST or
AT they both contain a similar amount of informa-
tion about future 4A7. For 7 < 25 days AT — AT
performs somewhat better than ST — AT but the
reverse becomes true for longer lead times. One
wonders whether we observe here the familiar finding
that for short range forecasting the initial state of the
atmosphere is most important while for longer lead
times the state of the surface becomes the predominant
source of information. Figure 3 also indicates that,
for lead times up to a month, it is easier to forecast
ST from AT than AT from ST. In other words, on
short time-scales it is mainly the atmosphere that
drives the ocean, rather than the other way around.
Because he used monthly mean data Roden (1960)
could not detect this lead-lag relationship.

Results of the ST — AT and AT — AT schemes
are repeated in Fig. 4 along with skill scores out to a
year and a comparison with Texe/~-Den Helder for
the first month. At San Diego the skill remains
positive (although very small) out to about a year for
both schemes, a truly remarkable case of persistence
of anomalies. The encircled values are 10-day averages
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of the skill of daily forecasts made in exactly the
same way for Den Helder. During the first 10 days
the forecast skill is equally high in these very different
areas but beyond 20 days knowledge of ST (or AT)
does not help AT forecasting very much any more at
Den Helder. In both San Diego and Den Helder the
AT — AT scheme is superior (inferior) to the ST —
AT scheme for short (long) lead times.

b. Seasonality of daily forecasts

Figure 5 shows the skill score S as a function of
calendar month of the predictor and lead time for
the ST — AT scheme. The number of forecasts
verified per month is about 40% of 30 X 32 (for each
lead time). Skills larger than 20 are hatched, lower
than 10 are stippled. The S at 3 days is given
specifically by a number, ranging from 31 in Decem-
ber and February to only 11 in September. The skill
scores are low in late summer for all lead times.
Figure 6 is the same as Fig. 5 but now for AT — AT.
At a lead time of 3 days AT — AT outperforms ST
— AT in all months of the year but the reverse
becomes true for nearly all months at longer lead

100 §-

SAN DIEGO 1948—(979
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FIG. 3. Year round skill score (%) of the ST — ST, ST — AT,
AT — AT and AT — ST schemes. All data are detrended, over
1948-79 and for the San Diego setting. At 7 = 0, ST and AT
specify themselves (trivially) with § = 100%.
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FiG. 4. Year-found skill score (%) of the ST — AT and AT — AT schemes for lead
times out a year. The curves are for San Diego, 1948-79. The encircled dots and
asterisks are 10-day averages of the skill score of daily forecasts made in exactly the
same way for the pair light-vessel Texel and Den Helder over the period 1890-1977.

times. Seasonality in the skill of the AT — AT scheme
is virtually absent. The clearest seasonality is visable
in the ST — ST scheme (see Fig. 7). ST is highly
predictable in all months of the year except when the
mixed layer is shallow (in late summer). Figure 7 is
essentially similar to the plot of autocorrelation of
ST versus month and lag, compare to Fig. 7 in Van
den Dool and Horel (1984). Combining the infor-
mation of Figs. 5, 6 and 7, it would seem that the
lack of skill of the ST — AT scheme in late summer
is caused by the short time scale of the ocean’s
anomalies. ‘

'
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FIG. 5. The skill score (%) of the ST — AT scheme as a function
of month (i.e. month of the predictor) and lead time. Skill scores
larger than 20 are hatched, less than 10 stipled. The vertical row
of numbers at + = 3 is the skill score of 3 day forecasts for all
months.

c. Averaging the predictand

In this subsection we present year round results
for the ST — AT scheme for various lengths of time
averages working on A7. We start on day 0 from
ST(0) and ask the question whether the skill of
predicting time averaged A7, notation A7T'(7), will
increase with the length of the averaging operator i.
To that end we replaced daily values A7(k, j) by

k+i—1)2
2 ATK, i
k'=k—(i—1)/2
and repeated the procedure of calculating frequency
distributions, making forecasts, etc. In Fig. 8a one
can see that, indeed, at a lead time of 20 days (as an
example) there is more skill in predicting a 5-day
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FIG. 6. As in Fig. 5 but now for AT — AT.
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FIG. 7. As in Fig. 5 but now for ST — ST.

mean AT than an instantaneous A7. And so on for
15 and 29 day mean AT. One explanation of this
increase in skill could be that by averaging in time
the noise in the AT series is suppressed, so as to bring
out more clearly the signal associated with S7. A less
favorable explanation would be that by increasing the
averaging period i, the first values included in AT(7)
move backward in time towards the moment at
which S7(0) was observed. Since the skill of instan-
taneous forecasts is larger for smaller lead time this
may explain the increase with / in Fig. 8a. Actually
there is a problem in defining the notion lead time
7. At first sight, it seems natural to define the lead
time 7 by the distance from the day at which ST is
measured to the center of the average that operates
on AT. The results in Fig. 8a are plotted in that
fashion (see inset of Fig. 8a). However, for small =
and/or large i the AT'(r) value is composed of
individual AT values stretching back prior to the day
at which S7 is measured. Since this is clearly unde-
sirable, those parts of the curves in Fig. 8a suffering
from that problem are dashed. Another way to look
upon the notion of lead time would be to define it
as the distance between the day at which S7 is
measured and the first daily value of AT included in
AT'(7). This defines the second notion of lead time
as

T'=7r~((—-1)2

See the inset in Fig. 8b for a clarification.

In Fig. 8b the results are plotted as a function of
7'. This changes the picture quite a bit. For small
lead times (<5 days) there is more skill in forecasting
an instantaneous A7 value than a time-averaged A7.
More specifically, yesterday’s sea surface temperature
contains more information about today’s air temper-
ature than about any time-averaged A7 starting today.

C))

H. M. VAN DEN DOOL AND J. L. NAP

883

However, for longer lead times time-averaging does
improve the skill. For instance, today’s S7(0) has
more to say about AT? starting 20 days from now
than about an instantaneous A7 20 days ahead. This
unambiguously shows the positive impact of reducing
the noise in the AT series on the skill of the ST —
AT forecasting scheme.

d. Averaging the predictor

In the previous section we fixed the predictor and
considered various averages applied on the predictand.
In the present section we will fix the predictand to
be AT?° and ask the question whether averaging the
predictor (ST) is of any help in increasing skill of
predicting AT?. Again we have to deal with the
ambiguity in the notion lead time. In Fig. 9 there are
two displays of the same results. In Fig. 9a 7 is
defined as the distance (in days) between the centers
of gravity of the time averages over ST and AT
respectively, and in Fig. 9b 7’ is the distance separating
the end of the average over ST and the beginning of
the average over AT. For a prediction of AT'(7)
starting from S7Y(0) 7 relates to 7' by

T=r—@—-D2-0U~- D2 &)

Insets in Figs. 9a and 9b clarify the meaning of
and 7.
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—LEAD TIME (days)——>

FIG. 8. Year-round skill score (%) of the ST — AT’ scheme
where AT is averaged over i = 1, 5, 15 or 29 days. The curves are
for San Diego, 1948-79. In the upper panel (a) the results are
plotted versus a lead time () which is the distance between S7T{0)
and the center of the average working on AT (see inset for an
example). In the lower panel the same results are plotted against
the lead time 7' which is the distance between S7(0) and the first
daily AT value included in the average AT [See Eq. (4) and inset].
The dashed part of the curves in (a) suffer from definitional
problems described in the text.



884

40

SKILL SCORE (%} —>

i ! 1 ]
9] 10 20 30 40 50
LEAD TIME (days)l—>

FIG. 9. Year-round skill score (%) of the ST — AT’ scheme
where S77 is averaged over j = 1, 5, 16 and 29 days and i = 29
days. The curves are for San Diego, 1948-79. In the upper panel
the results are plotted versus a lead time (7) which is the distance
between the center of the two averages (see inset for example)
while in the lower panel the lead time is defined as the distance
from the last value included in S77 to the first included in AT [see
inset and Eq. (5)]. In (a) the ST! — AT? curve has been omitted
since it virtually coincides with 5/29. The dashed part of the curves
in (a) suffer from definitional problems described in the text.

Figure 9a shows -how averaging the predictor in-
creases our skill score. Figure 9b indicates that even
with a very conservative view on the notion lead time
the skill score generally increases with increasing
averaging of the predictor (at least away from 7’
= (). Therefore we conclude that suppressing noise
in one way or another in the predictor time series is
advantageous to making a forecast—at least for the
San Diego case.

e. More than one predictor

We now return to forecasting daily 47 from ante-
cedent daily information. In Figs. 2, 3, 5 and 6 it
was shown that although AT — AT performs some-
what better than ST — AT (at least for 7 < 25 days)
the level of skill of these two schemes is not all that
different. One may suspect actually that the high
instantaneous correlation between A7 and ST forces
these schemes to behave more or less the same.
Therefore it is of interest to find out whether a two-
predictor scheme based on antecedent A7 and S7
[(4T, ST)— AT] can add anything to the information
contained already in ST or AT. In Fig. 10 we compare
year round results of the ST — AT and AT — AT
scheme (the same as in Fig. 3) with the (ST, AT) —
AT scheme defined by

ST(0) and AT(0) € (g/g) — AT(7) € (g) 6)

(6) is a natural extension of (2). As it turns out (6)
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has considerably more skill at all lead times than
either of the single predictor schemes. However, this
in itself does not necessarily mean that a two-predictor
scheme is. better. One may argue that by requiring
AT(0) to be extreme one in fact selects cases where
ST(0) is much more extreme than being a meraber
of MA or MB. And, indeed, choosing a more extreme
ST(0) as a predictor would increase the skill score.
However, this possibility is ruled out by considering
the mean anomaly. For the ST — AT scheme the
mean absolute anomaly in S7(0) is 1.58°C and for
the (ST, AT) — AT scheme this value is 1.68°C, not
much more extreme. Likewise, for the AT — AT
scheme the mean absolute anomaly in AT(0) is
2.42°C and for the (ST, AT) — AT scheme this
value is 2.47°C. Hence the two predictor scheme is
not a super extreme one predictor scheme in disguise,
and therefore we conclude that two predictors (ST
and AT) contain more information about future AT
than just one (ST or AT). This conclusion is inde-
pendent of lead time. A likely physical explanation
is that requiring AT to be extreme guarantees the ST
to become (or stay) more extreme for the next few
days than it would have done otherwise. This is
supported by the fact that the AT — ST has a high
skill at short lead times (see Fig. 3). So using AT as
a predictor works out, to some extent, as a look
ahead ST, or in other words as reducing the effective
lead time of the (ST, AT) — AT scheme.

f. Predicting max/min temperature

Up to this point we have been concerned with
predicting the daily averaged temperature. In this
section we will consider the prediction of maximum
and minimum temperature (7, and 7,) separately.
The predictor will be ST, so we have (1) ST — T,,
(2) ST — T, and for comparison (3) ST — AT (=(T%
+ T,)/2). Each of these schemes has a decay of skill
with increasing lead time in the fashion shown in
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FIG. 10. Year-round skill score (%) of the ST — AT, AT — AT
and (ST, AT) — AT schemes. The latter is defined by Eq. (6). The
numbers in parenthesis are the number of forecasts made with a
given scheme.
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Fig. 2. Figure 11 shows the results for the 3-day
forecast [ST(0) — T, (3) etc.] as a function of the
month of the year. The seasonality in the three curves
is similar, each having minimum skill in September.
With the exception of December the S7(0) has more
to say about future 7, than about future T, by a
wide margin. Apparently minimum air temperature
is controlled much more by the ocean’s temperature
than maximum air temperature is. This is quite
evident also from Fig. 1 which indicates that AT is
rarely lower than ST while the opposite is a common
feature. It is only in the absence of incoming solar
radiation that ST would determine T, but such days
are rare in San Diego. It is also interesting to see that
AT is about as predictable as T,,. Apparently averaging
T, with T, suppresses noise and even though T is
much less related to ST than T, is, the resulting (7,
+ T,)/2 is as predictable as T,,.

g. Outside the coastal strip

In Van den Dool and Nap (1981) the central issue
was the very rapid decrease of skill of forecasting
when moving landward from the North Sea coast of
the Netherlands. While employing ST as a predictor,
they found the skill of forecasts of monthly mean AT
to be reduced to ¥ its coastal value over a distance
of only 20-50 km. To test this behavior in Southern
California we repeated the calculations for air tem-
perature in Escondido, situated about 25 km away
from the coast and 40 km north-northeast of San
Diego. Figure 12 is as Fig. 11 but now for Escondido’s
air temperature predicted from S7 at the Scripps
Pier. The results are somewhat amazing. There is a
radical decrease in skill compared to Fig. 11, but
mostly in the T, prediction which has dropped from
15 to only 4% (yearly-averaged skill). In fact the T,
predictions for Escondido are almost as skillful as
those for San Diego. The 4T skill has dropped from
26 to 16% which fits in very well with the resuits for
the Netherlands where the skill score of the ST —
AT scheme, S being averaged over the first 10 days,
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Fig. 11. Skill score (%) of 3-day forecasts of maximum (7),
minimum (7)) and daily mean temperature at San Diego starting
from antecedent ST as a function of the month of the year.
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F1G. 12. As in Fig. 11 but for Escondido’s air temperature.

drops from 29% at Den Helder to 18% for AT at De
Bilt (about 50 km away from the coast).

At a lead time of 15 days the skill of the ST — T,
and ST — T, schemes has leveled off to small values
(0.05-0.10 at San Diego and 0.05 at Escondido). So
the decrease of skill when going inland is most clearly
visible for time scales less than 15 days.

4. Conclusions and discussion

The conclusions (valid for San Diego unless stated
otherwise) of this study are:

1) Using simple forecast techniques and readily
available local initial data a significant amount of
skill is achieved in air temperature forecasts for
stations near the ocean, San Diego in particular.
Sampling just today’s sea surface temperature (S7)
or air temperature (47) turns out to have prognostic
value for the air temperature out to a month (Dutch
coast) and out to a year (!) (San Diego).

2) The skill score of the ST — ST scheme is
superior (at all lead times) to ST — AT, AT — AT
and AT — ST.

3) It is easier, for lead time less than a month, to
forecast AT — ST than to forecast ST — AT.

4) For lead times less than a month AT — AT is
generally superior to S7 — AT, for longer lead times
the reverse is true. This phenomenon is observed
throughout most of the year in San Diego and seems
to hold up at the Dutch coast as well (except that the
turn around point is 10 rather than 25 days).

5) The skill score of the ST — AT, ST — ST and
AT — AT schemes is generally high throughout the
year with the exception of late summer. This is
attributed to the shallowness of the mixed layer of
the ocean by the end of the summer.

6) Averaging the predictand in the ST — AT
scheme has a positive (negative) impact on the skill
score for long (short) lead times. (A lot of caution is
needed in defining lead time in schemes where either
the predictor or the predictand is averaged in time.)
Averaging the predictor in the ST — AT scheme
seems to improve the skill of predicting monthly
means for nearly all lead times. The latter result
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differs from Roads and Barnett’s (1984) results con-
cerning statistical prediction of 500 mb height. They
found that the most recent piece of information is
the best predictor of all time averages up to a month.
Such a result can be expected for processes close
enough to red noise; San Diego’s AT and ST do not
obey the red noise process. But San Diego may very
well be an exception. In the Texel~-Den Helder case
the skill score of the ST — AT (+' = 0) scheme
decreases monotonically from 0.28 for j = 1 to 0.19
for j = 30, in agreement with Roads and Barnett
(1984).

7) Using two predictors (S7 and A7) seems to
improve AT prediction. The reason for this could be
that AT has a lot of prognostic value concerning S7.

8) The skill score rapidly decays if one tries to
predict AT at Escondido (25 km inland) from ante-
cedent S7. This is in agreement with earlier findings
by Van den Dool and Nap (1981) for the Dutch area.
The decay in skill is mostly in the decay of the skill
in predicting the maximum temperature for lead
times less than 15 days.

9)" For both San Diego and Escondido, the ST has
much more prognostic informatioh about upcoming
minimum temperature than maximum temperature.

The results reported here have obvious restrictions.
The weather and climate of San Diego could very
well be a rare case where local forecasting happens
to be successful out to incredible lead times. So the
relevance to other areas may be small. One may even
arguc that we have not studied local forecasting in
its most restricted sense. In the San Diego area one
single observation seems to be enough to inform us
about climatic anomalies of large spatial and temporal
- extension. The sea surface temperature at the Scripps
Pier can be anomalous for 1 or 2 years and these
anomalies correlate highly (especially in winter) with
sea surface temperature anomalies all over the North
Pacific (Cayan, personal communication, 1984).

Conditions are completely different in the North
Sea area. A single observation in that area does not
seem to contain prognostic information for lead times
longer than a month. As discussed in Van den Dool
and Nap (1981) there is a much stronger seasonality
in the skill probably owing to the seasonal dependence
of the stability of the lower atmosphere. However,
combination of the results from these two cities does
suggest that predictability of AT from antecedent
local information could play a significant role along
boundaries of large water bodies. In practice ST could
be incorporated into the post processing [Model
Output Statistics (MOS)] of a large-scale numerical
weather prediction model. Often antecedent 47 has
been used in MOS and in a physical sense A7 may
be a proxy to describe ST (or the state of the surface
more in general). However it is desirable to include
ST directly both for short and long range prediction.

A very old question in the context of long-range
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prediction is whether it is advisable or inevitable to
average the predictand and/or predictor in time. This
question seems to have been answered in the affir-
mative since it has become almost tradition to forecast
monthly and seasonal means. In this paper (as well
as Roads and Barnett, 1984) this question was ap-
proached in a very formal way, that is by investigating
whether skill scores improve upon averaging. But
there is also the practical consideration. From a
practical point of view it does not make any difference
(to a user) whether we forecast that there is an above
normal chance that the monthly mean will be cold
or that there is an above normal chance that any
given day of the coming month will be cold. So the
scientific finding that skill improves upon averaging
the predictand could be quite meaningless to the user
of the forecast. The tradition to forecast time means
has another drawback: it obscures the fact that rnost
of the skill is really in the first few days. It is better
to look upon long-range prediction as information
concerning the slowly varying part of the weather
and to verify these predictions also against daily Jdata
(either instantaneous or filtered daily data) for various
lead times rather than against one single monthly or
seasonal mean alone.
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